

Di-boson Physics @ Tevatron

(focus on results since ICHEP 2006)

Frank Würthwein UCSD

- Di-bosons as a step towards Higgs & other new physics
- Common Experimental Challenges
- Recent Results
 - Wγ, Zγ
 - WZ
 - ZZ (3 new results for Moriond)

Finding Rare Processes

- Di-bosons are reality check on path to finding multilepton final states with very small σ x Br (e.g. Higgs, SUSY, ...).
- Todays 1st observation is tomorrows background (e.g. WW for Higgs, WZ for SUSY, ...).

• 3 lepton + MET common to: WZ, SUSY, ...

• 2 lepton + MET common to: WW, ZZ, Higgs, ...

Status as of ICHEP 2006

Measuring Triple Gauge Couplings

Boson pair production probes gauge boson self-interactions

- \Rightarrow consequence of non-Albelian nature of SU(2)_L \otimes U(1)_Y
- ⇒ sensitive to new physics in trilinear gauge couplings (TGC)

Tevatron (pp) complementary to LEP (e⁺e⁻)

- Sensitive to different TGC combinations
- Tevatron explores higher \$\frac{1}{5}\$ than LEP

$$q \, \overline{q} \, ' \rightarrow W^{(*)} \quad \rightarrow W \, \gamma : WW \, \gamma$$

$$q \, \overline{q} \, ' \rightarrow W^{(*)} \quad \rightarrow WZ : WWZ$$

$$q \, \overline{q} \, \rightarrow Z \, / \gamma^{(*)} \rightarrow WW : WW \, \gamma, WWZ$$

$$q \, \overline{q} \, \rightarrow Z \, / \gamma^{(*)} \rightarrow Z \, \gamma : ZZ \, \gamma, Z \, \gamma \, \gamma$$

$$q \, \overline{q} \, \rightarrow Z \, / \gamma^{(*)} \rightarrow ZZ : ZZ \, \gamma, ZZZ$$

Absent in SM

Common Experimental Challenges for WW, WZ, ZZ, Wγ, Zγ

- Require trigger e or μ with pt>20GeV
- Allow 2nd,3rd,4th lepton to be pt>10GeV.
 - and lepton and/or Z vetos to reduce feeddown
- γ with pt >7GeV
- Isolation cut(s) to reduce fakes from jets
 - Calorimeter isolation
 - Track isolation
- MET cut for WW/Z/ γ , ZZ->II $\nu\nu$ but not ZZ->4I and Z γ
 - fake MET due to mismeasured j,e,mu or E_T fluctuations
- Measure acceptance corrections & fake rates in data.

Ζγ, Wγ

- New at DPF 2006:
 - CDF: $Z\gamma$, $W\gamma$
 - D0: W_γ radiation amplitude zero
- New at ICHEP 2006:
 - D0: Zγ

Zγ in eeγ Large clean samples, consistent with SM. (~400 events out of which 30-50 are bkg)

Cross Section times Branching Fraction:

CDF: $4.9 \pm 0.3 \pm 0.3 (syst) \pm 0.3 (lumi) pb$

D0: $4.51 \pm 0.37 \pm 0.27(lumi)pb$

Theory: $4.7 \pm 0.4 \, pb$

D0: σ x BR above 90GeV in 3-body transverse mass to reduce FSR.

CDF: total σ x BR.

Both in agreement with SM.

CDF: $19.11 \pm 1.04 \pm 2.40 \pm 1.11 pb$

SM: 19.3 ± 1.4

D0 e: $3.12 \pm 0.49 \pm 0.19 pb$

D0 μ : 3.21 \pm 0.49 \pm 0.20 pb

SM: $3.21 \pm 0.08 pb$

 $541.7\pm4.02(\text{stat.})\pm1.57(\text{sys.})$ $194.3\pm0.15(\text{stat.})\pm66.91(\text{sys.})$ $112.0\pm0.39(\text{stat.})\pm0.32(\text{sys.})$ $12.4\pm0.60(\text{stat.})\pm0.04(\text{sys.})$ $860.4\pm29.25(\text{stat.})\pm66.95(\text{sys.})$

Number of Observed 855

	Muon Channel		Electron Channel
Luminosity	878 pb ⁻¹		933 pb ⁻¹
W + jet Background Events	$98 \pm 12 \text{ (stat. } + \text{sys.)}$		$148 \pm 17 (\text{stat.} + \text{sys.})$
$\ell e X$ Background Events	$6 \pm 2 \text{ (stat.} + \text{sys.)}$		$34 \pm 4 \text{ (stat.} + \text{sys.)}$
$W\gamma \rightarrow \tau \nu \gamma$ Background Events	$2.6 \pm 0.4 (stat. + sys.)$		$1.7 \pm 0.2 (\text{stat.} + \text{sys.})$
$Z\gamma \to \ell\ell\gamma$ Background Events	$8 \pm 1 \text{ (stat. } + \text{sys.)}$		-
Candidate Events	245	0.9fb-1	389
Expected Signal	130 ± 9	0.310-1	211 ± 14
Measured Signal	130 ± 18		205 ± 26

Radiation Amplitude Zero in Wy

SM at LO has amplitude zero in COM production angle.

$$u\bar{d} \rightarrow W^+ \gamma$$
, zero at $\cos \theta_{CM} = -1/3$

$$d\overline{u} \rightarrow W^{-}\gamma$$
, zero at $\cos \theta_{CM} = +1/3$

Experimentally visible as dip in

Provides information to limit aTGC, that is orthogonal to cross section.

> 3-body transverse mass cut to enhance prompt production,

Generator Level MC

Bkg subtracted data

Status in WZ, ZZ as of ICHEP 2006

- Use the purely leptonic final state for SM observation.
- Use the Ivjj and Iljj final state for new physics searches.
- Ignore the jjjj final states because of too much bkg.

News Since ICHEP 2006

- WZ in IIIv by CDF @ DPF
- Search in ZZ -> IIII by CDF @ DPF

- Search in ZZ -> IIII by D0 @ M.EWK
- More data in ZZ -> IIII by CDF @ M.QCD
- Search in ZZ -> IIvv by CDF @ M.QCD

Maximizing Lepton Acceptance

9 lepton categories, 4 trigger lines

First Observation of WZ

$$5.0^{+1.8}_{-1.6} pb (stat + syst)$$

16 evts in III_√ signal region. 2.7+-0.4 expected bkg.

Statistical Significance 6σ (based on yield and MET)

Theory: 3.7+-0.3pb @ NLO (Campbell & Ellis)

Source	Expectation \pm Stat \pm Syst \pm Lumi
Z+jets	$1.22 \pm 0.27 \pm 0.28 \pm$ -
ZZ	$0.89 \pm 0.01 \pm 0.09 \pm 0.05$
$Z\gamma$	$0.48 \pm 0.06 \pm 0.15 \pm 0.03$
$ t\bar{t} $	$0.12 \pm 0.01 \pm 0.01 \pm 0.01$
WZ	$9.79 \pm 0.03 \pm 0.31 \pm 0.59$
Total Background	$2.70 \pm 0.28 \pm 0.33 \pm 0.09$
Total Expected	$12.50 \pm 0.28 \pm 0.46 \pm 0.68$
Observed	16

ZZ → 4 leptons

CDF & D0 use different theory Normalizations: 2.1pb vs 1.6pb

2.51+-0.16	1.71+-0.11	ZZ expected
0.029+-0.021	0.17+-0.04	Bkg expected
1 (4μ)	1 (eeμμ)	Yield observed
1.5fb-1	1fb-1	Lumi
4.0pb	4.3pb	95% CL limit

$ZZ \rightarrow ||vv||$

- Same selection and analysis as H->WW
 (See Ben Kilminster's talk on Wednesday)
 - Except tighter MET cut to suppress DY
 - Use Matrix Element Method to define event probability.
 - Use event probabilities to define Likelihood Ratio (LR):

$$LR = \frac{P_{zz}}{P_{zz} + P_{ww}}$$

Fit LR templates for ZZ cross section.

Matrix Element Method

Event Probability Density

$$P(x_{obs}) = \frac{1}{\langle \sigma \rangle} \int \frac{d\sigma_{th}(y)}{dy} \epsilon(y) G(x_{obs}, y) dy$$

Measure MET & leptons Integrate over v's and partons, convoluting with eff. & resolution.

 X_{obs} : \overrightarrow{L}^+ , \overrightarrow{L}^- , \cancel{E}_{Tx} , \cancel{E}_{Ty}

y: true value

 σ_{th} : MCFM LO Parton Level Xsec

ε: efficiency

G: Resolution

<σ>: Normalization

3/19/07

Frank Wurthwein UCSD

Events / 0.50

Overall less yield in Z peak than expected 16

"Evidence for" ZZ production

1.71+-0.11 signal + 0.17+-0.04 bkg expected.

1 eeμμ event observed.

	$H\nu\nu$	4 lepton	Combined
$prob 2\sigma$ Expected	0.50	0.92	0.88
prob 3σ Significance	0.27	0.71	0.77
prob 5σ	0.05	0.24	0.51
Observed Signifi cance	1.9	2.2	3.0 o
95% CL Limit (pb)	5.2	4.0	(3.1)

CDF measured cross section: 1.14+- 0.89 pb Theoretical Expectation: 2.1pb

WZ bkg event to ponder over Grappa

Outlook: Limits on Anomalous TGCs...

Place stringent model-independent limits on anomalous WWZ triple gauge coupling (TGC)

Generator Level MC

$\begin{array}{c} 2 & 1.8 \\ \hline \begin{array}{c} 1.6 \\ \hline \\ \begin{array}{c} 1.6 \\ \hline \\ \end{array} \\ \begin{array}{c} 1.4 \\ \hline \\ 0.8 \\ \hline \\ 0.6 \\ \hline \end{array} \\ \begin{array}{c} 1.2 \\ \hline \\ 0.8 \\ \hline \\ 0.6 \\ \hline \end{array} \\ \begin{array}{c} 1.2 \\ \hline \\ 0.8 \\ \hline \end{array} \\ \begin{array}{c} 1.2 \\ \hline \\ 0.2 \\ \hline \end{array} \\ \begin{array}{c} 1.2 \\ \hline \\ 0.2 \\ \hline \end{array} \\ \begin{array}{c} 1.2 \\ \hline \\ 0.2 \\ \hline \end{array} \\ \begin{array}{c} 1.2 \\ \hline \\ 0.2 \\ \hline \end{array} \\ \begin{array}{c} 1.2 \\ \hline \end{array} \\ \begin{array}{c} 1.$

CDF data & SM expectation

